

800Gb/s OSFP SR8 100m Transceiver SLT0OPS8800GT85C / SLT1OPS8800GT85C

Features

- 8x100G PAM4 retimed 800GAUI-4 electrical interface
- Dual MPO-12 APC connector and MPO16 APC connector are provided
- 8 channel VCSEL arrays and 8 channels PIN photo detector arrays
- Maximum link length of 60m on OM3 or 100m on OM4
- Hot Pluggable OSFP form factor
- Compliant to OSFP Module Specification Rev 5.0
- Compliant with CMIS 5.2
- Compliant with IEEE 802.3db
- Compliant to IEEE 802.3ck
- Power consumption is less than 16W
- Operating case temp Commercial: 0°C to +70 °C
- RoHS compliant

Applications

- 800GBASE-SR8 800G Ethernet
- Data center

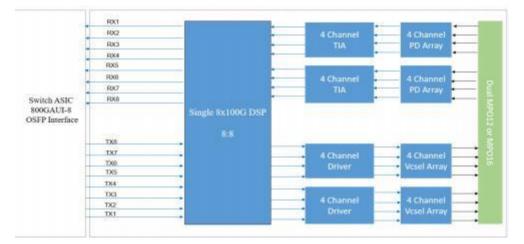
Dual MPO-12 Module appearance

MPO16 Module appearance

Order Information

Part No.	Bit Rate (Gbps)	Laser (nm)	Distance ¹	Fiber Type	DDMI	Connector	Temp ²
SLT0OPS8800GT85C	850	850	100m	MMF	YES	Dual MPO-12	0°C~+70°C
SLT1OPS8800GT85C	850	850	100m	MMF	YES	MPO16	0°C~+70°C

Note:


- 1. OM4 fiber, 60m for OM3 fiber
- 2. Case Temperature

I. General Description

SLT0OPS8800GT85C/SLT1OPS8800GT85C is an Eight-Channel, Parallel, Pluggable, Fiber-Optic OSFP for 800Gigabit Ethernet applications. This transceiver is a high-performance module for short-range data communication and interconnect application. It integrates four data lanes in each direction with 8x53.125GBd. The length of OSFP SR8 is up to 60 meters over OM3 MMF or 100 meters over OM4 MMF. This module is designed to operate over multimode fiber systems using a nominal wavelength of 850nm.

II. Functional Blcok Diagram

III. Absolute Maximum Ratings

It has to be noted that the operation in excess of any individual absolute maximum ratings might cause permanent damage to this module.

Parameter	Symbol	Min.	Typical	Max.	Unit	Notes
Supply Voltage	Vcc ₃	-0.5	-	+3.6	V	
Storage Temperature	Ts	-40	-	+85	°C	
Operating Humidity	RH	+15	-	+85	%	1
Receiver Damage Threshold per Lane	P _{IND}	+5	-	-	dBm	

Note: 1 No condensation

IV. Recommended Operating Conditions

Parameter	Symbol	Min.	Typical	Max.	Unit	Notes
Operating Case Temperature	T _C	0	-	+70	°C	
Power Supply Voltage	Vcc	3.14	3.3	3.47	V	
Power Dissipation	Pd	-	-	16	W	
Supply Current				5.1	А	
Bit Rate	BR			850	Gbps	
I2C Clock Frequency		0		1000	kHz	

V. Electrical Characteristics

Parameters	Min	Typical	Max	Unit
Pre FEC Bit Error Ratio			2.4E-4	
Post FEC Bit Error Ratio			1E-12	
Transmitter	(each Lane)			
Differential pk-pk Input Voltage tolerance	750			mV
Differential Termination Mismatch			10	%
Eye hfour	10			mV
Common-mode to differential-mode return loss	IEEE802.3	Sck Equation	n (120G–1)	dB
Vertical eye closure			12	dB
Effective return loss	7.3			dB
Transition Time	10			ps
Receiver (each Lane)			
Differential data output swing	300		900	mVpp
Differential termination mismatch			10	%
Eye hfour	15			mV
Vertical eye closure			12	dB
Common-mode to differential-mode return loss	IEEE802.3	Sck Equation	n (120G–1)	
Effective return loss	8.5			dB
Transition time	8.5			ps

VI. Optical Characteristics

	Transmitter	Optical In	nterface			
	Parameter	Symbol	Min	Typical	Max	Unit
D	ata rate per lane	DR		53.125		GBd
M	odulation format			PAM4		
Cer	nter Wavelength 1	λ	840	860	868	nm
RM	1S spectral width	σ			0.6	nm
Average I	Launch power, each lane	Pavg	-1		4	dBm
Optical Powe	er OMA, each Lane, max			3.5		dBm
OMAouter, each lane min	max (TECQ, TDECQ) <1.8 dB 1.8 < max (TECQ, TDECQ) < 4.4 dB	РОМА	max [-2.6	, max(TEC – 4.4]	CQ,TECQ)	dBm

武汉速粒通科技有限公司

Wuhan Suliton Technology Co., Ltd

Transmitter and dispersion eye closure (TDECQ), each lane	TDECQ			4.4	dB
Transmitter eye closure for PAM4 (TECQ), each lane	TECQ			4.4	dB
Extinction ratio	ER	2.5			dB
Transmitter power excursion, each lane				2.3	dBm
Optical Return Loss Tolerance	ORLT			14	dB
Optical Power for TX DISABLE				-30	dBm
Encircled fluxb2		≥86% at	19 um ≤30 um	9% at 4.5	

Note:

- 1. Defined according to the performance of the laser used.
- 2. Measured into type A1a.2 or type A1a.3, or A1a.4, 50 um fiber, in accordance with IEC 61280-1-4

	Recei	ver Optical	Interface			
Para	neter	Symbol	Min	Typical	Max	Unit
Data rate	e per lane	BR		53.125		Gbd
Modulati	on format			PAM4		
Center W	/avelength	λ	842	850	948	nm
Damage	threshold		5			dBm
Average receive	power, each lane		-6.4		4	dBm
Receive power, ea	ch lane (OMAouter)				3.5	dBm
Receiver	reflectance	Rr			-15	dB
Receiver sensitivity	y(OMA), each lane1		RS = m	ax (-4.6 , TEC	CQ – 6.4)	dBm
Stressed receiver s	sensitivity, each lane				-2	dBm
	Assert		-15			dBm
Rx LOS	De-assert				-7.5	dBm
	Hysteresis		0.5		5	dB

Notes:

1. Receiver sensitivity is informative and is defined for a transmitter with a value of TECQ. Measured with conformance test signal at TP3 for BER = 2.4E-4 Pre-FEC.

VII. Management Interface

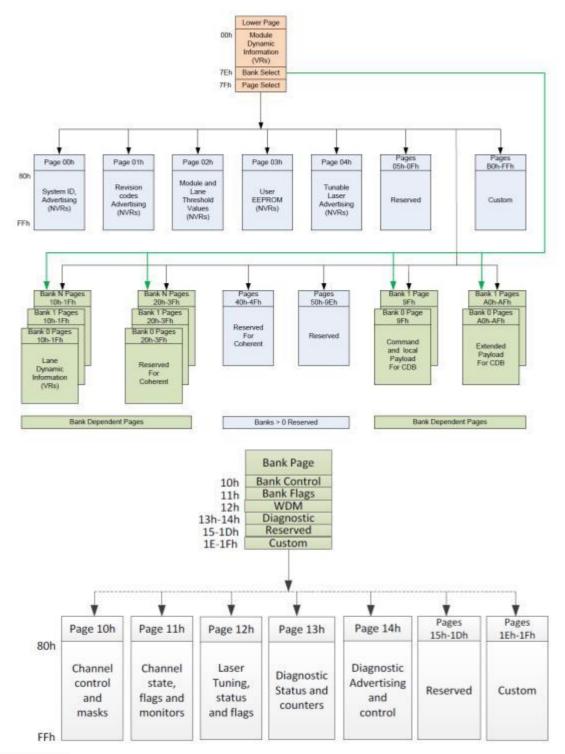


Figure 1, CMIS Module Memory Map

VIII. Multiple Applications Support

The SLT0OPS8800GT85C/SLT1OPS8800GT85C supports CMIS 5.2 defined Application Advertising, Application Selection and Instantiation.

Application Advertising

		Application		
Address (Dec)	AppSel Code	Name	Value (Hex)	Description
85	NA	Module Type encoding	1	Optical Interfaces: MMF
86		HostInterfaceID	4B	HostInterfaceIDApp1:100GAUI-1-S C2M
87		MediaInterfaceID	D	MediaInterfaceIDApp1:100GBASE-SR
88	0001b	HostLaneCount&MediaLaneCount	11	LaneCountApp1: TX & RX 1 lanes
89		HostLaneAssignmentOptions	F	Permissible first host lane number: lanes 1, 2, 3, 4,
01h:176		MediaLaneAssignmentOptions	F	Permissible first media lane number: lanes 1, 2, 3, 4
90		HostInterfaceID	F	HostInterfaceIDApp2:200GAUI-4
91		MediaInterfaceID	E	MediaInterfaceIDApp2:200GBASE-SR4
92	0010b	HostLaneCount&MediaLaneCount	44	LaneCountApp2:TX & RX 4 lanes
93		HostLaneAssignmentOptions	1	Permissible first host lane number: lane 1
01h:177		MediaLaneAssignmentOptions	1	Permissible first media lane numbern: lane 1
94		HostInterfaceID	С	HostInterfaceIDApp3:100GAUI-4 C2M
95		MediaInterfaceID	0	MediaInterfaceIDApp3: SFF-8024 Undefined
96	0011b	HostLaneCount&MediaLaneCount	44	LaneCountApp3:TX & RX 4 lanes
97		HostLaneAssignmentOptions	1	Permissible first host lane number: lane 1
01h:178		MediaLaneAssignmentOptions	1	Permissible first media lane number: lane 1
98		HostInterfaceID	4F	HostInterfaceIDApp4:400G S C2M
99		MediaInterfaceID	11	MediaInterfaceIDApp4:400G-SR4
100	0100b	HostLaneCount&MediaLaneCount	44	LaneCountApp4:TX & RX 4 lanes
101		HostLaneAssignmentOptions	1	HostLaneAssignmentOptionsApp4:begin lane 1
01h:179		MediaLaneAssignmentOptions	1	Permissible first media lane number: lane 1
102		HostInterfaceID	4D	HostInterfaceIDApp5:200GAUI-2-S C2M
103		MediaInterfaceID	1B	MediaInterfaceIDApp5:200GBASE-SR2
104	0101b	HostLaneCount&MediaLaneCount	22	LaneCountApp5: TX & RX 2 lanes
105		HostLaneAssignmentOptions	5	Permissible first host lane number: lanes 1, 3,
01h:180		MediaLaneAssignmentOptions	5	Permissible first media lane number: lanes 1, 3
106			FF	HostInterfaceIDApp6
107			0	MediaInterfaceIDApp6
108			0	LaneCountApp6
109			0	HostLaneAssignmentOptionsApp6
110			0	HostInterfaceIDApp7
111			0	MediaInterfaceIDApp7
112			0	LaneCountApp7
113			0	HostLaneAssignmentOptionsApp7
114			0	HostInterfaceIDApp8
115			0	MediaInterfaceIDApp8
116			0	LaneCountApp8
117			0	HostLaneAssignmentOptionsApp8

Figure 2, Application Advertising

As shown in the table above, the SLT0OPS8800GT85C/ SLT1OPS8800GT85C supports 6 applications:

800GBASE-SR8, 400GBASE-SR8, 200GBASE-SR8, 2x400GBASE-SR4, 4x200GBASE-SR2, and 8x100GBASE-SR1

Application Selection and Instantiation

The host can select Applications by programming the AppSel value in Staged Set 0. AppSel=1 is the default Application populated in the Active Control Set at power-on or reset.

*Note that the channels of the module are independent and can be configured separately. (ie. up to four 100GBASE-SR instances can be configured), however, it does not support different applications with different channels at the same time

FHMD-85SRC supports two methods of application selection and instantiation. The first method is implemented according to CMIS, and the second method is customized, which is simpler.

• First mothod:

The applications switching configuration sequence is as follows: read Application Descriptor Registers and select the required Appsel. Write application configuration to DPConfigLane<i> in Stage Control Set 0, then write 1 to ApplyDPInitLane<i> to trigger Application Instantiation.

The Active Set can be read from page11h. For example,

select AppDescriptor3:

Step 1: Write 0x30 in Page10h Byte145~Byte152(8 bytes)—Set AppselCode3

Step 2: Write 0xFF in Page10h Byte143—Set trigger register to run Application Instantiation.

Second mothod:

Set the value of Page10h Byte240. This is a private definition.

Code Value	Bit Pattern	Host Electrical Interface	Media Interface
0	00000000b	100GAUI-1-S C2M	100GBASE-SR1
1	0000001b	400GAUI-8	400GBASE-SR8
2	00000010b	200GAUI-8	200GBASE-SR8
3	00000011b	800G S C2M	800G-SR8
4	00000100b	400GAUI-4-S C2M	400GBASE-SR4
5	00000101b	200GAUI-2-S C2M	200GBASE-SR2

Figure 3, Private Host Electrical Interface Codes

TX & RX Squelch

Default TX and RX auto-squelch is enabled. But TX and RX auto squelch disable, and force squelching function are not supported.

TX input equalization

Default TX adaptive equalization is enabled. But TX adaptive equalization disable, and fixed equalization adjust function are not supported.

RX output Equalization

RX output Equalization follows CMIS Table 6-7, with default 1dB, readable and writable

Code Value	Bit pattern	Post-Cursor Equalization	Pre-Cursor Equalization
0	0000b	0dB (No Equalization)	OdB (No Equalization)
1	0001b	1 dB	0.5 dB
2	0010b	2 dB	1.0 dB
3	0011b	3 dB	1.5 dB
4	0100b	4 dB	2.0 dB
5	0101b	5 dB	2.5 dB
6	0110b	6 dB	3.0 dB
7	0111b	7 dB	3.5 dB
8-10	1000b-1010b	Reserved	Reserved
11-15	1011b-1111b	Custom	Custom

Rx Output Equalization Codes

Figure 4, Rx Output Equalization code table

RX output amplitude

RX output amplitude follows CMIS Table 6-8, Rx output amplitude is the difference peak-to- peak EYE high when Rx output equalization is set to 0dB. The default value of output amplitude is set to 2, with typical differential 600mVp-p.

Code Value	Bit pattern	Output Amplitude
0	0000b	100-400 mV (P-P)
1	0001b	300-600 mV (P-P)
2	0010b	400-800 mV (P-P)
3	0011b	600-1200 mV (P-P)
4-14	0100b-1110b	Reserved
15	1111b	Custom

Table 6-8 Rx Output Amplitude Codes

Figure 5, Rx Output Amplitude code table

Loopback capabilities

Media side input loopback and Host side input loopback feature are supported, loopback control method refers to CMIS.

Byte	Bits	Field Name Field Description			
13h:128	6	Simultaneous Host And Media Side loopbacks	Ob: not supported		
	5	Per Lane Media Side Loopbacks	1b: supported		
	4	Per Lane Host Side Loopbacks	1b: supported		
	3	Host Side Input Loopback	1b: supported		
	2	Host Side Output Loopback	1b: supported		
	1	Media Side Input Loopback	1b: supported		
	0	Media Side Output Loopback	1b: supported		

Figure 6, Rx Output Equalization code table

IX. Digital Diagnostic Monitor Accuracy

The following characteristics are defined over recommended operating conditions.

Parameter	Accuracy	Unit
Internally measured transceiver temperature ¹	+/-3	。C
Internally measured transceiver supply voltage	+/-3	%
Measured Tx bias current	+/-10	%
Measured Tx output power ²	+/-3	dB
Measured Rx received average optical power	+/-3	dB

Figure 7, Digital Diagnostic Monitor Accuracy

Notes:

1. Test point is the hotspot of the module.

2. DDM reports stability within 0.5 dB when temperature is stable. TX DDM reportes -40 dBm when TX disable.

X. Pin Assignment and Description

OSFP Transceiver Pad Layout, host PCB OSFP Pinout, and PIN Descriptions are as follows:

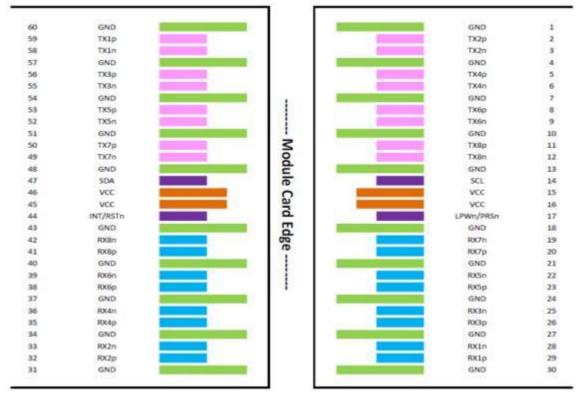


Figure 8, OSFP Transceiver Electrical Pad Layou

Pin	Name	Logic	Description	Plug Sequence	Notes
1	GND		Ground	1	
2	Tx2p	CML-I	Receiver Data Non-Inverted	3	
3	Tx2n	CML-I	Receiver Data Inverted	3	
4	GND		Ground	1	
5	Tx4p	CML-I	Receiver Data Non-Inverted	3	
6	Tx4n	CML-I	Receiver Data Inverted	3	
7	GND		Ground	1	
8	Тх6р	CML-I	Receiver Data Non-Inverted	3	
9	Tx6n	CML-I	Receiver Data Inverted	3	
10	GND		Ground	1	
11	TX8p	CML-I	Receiver Data Non-Inverted	3	
12	TX8n	CML-I	Receiver Data Inverted	3	
13	GND		Ground	1	
14	SCL	LVCMOS- I/O	2-wire Serial interface clock	3	
15	VCC		+3.3V Power	2	
16	VCC		+3.3V Power	2	
17	LPWn/PRSn	Multi- Level	Low-Power Mode / Module Present	3	1A
18	GND		Ground	1	
19	RX7n	CML-O	Receiver Data Inverted	3	
20	RX7p	CML-O	Receiver Data Non-Inverted	3	
21	GND		Ground	1	
22	RX5n	CML-O	Receiver Data Inverted	3	
23	RX5p	CML-O	Receiver Data Non-Inverted	3	
24	GND		Ground	1	
25	RX3n	CML-O	Receiver Data Inverted	3	
26	RX3p	CML-O	Receiver Data Non-Inverted	3	
27	GND		Ground	1	
28	RX1n	CML-O	Receiver Data Inverted	3	
29	RX1p	CML-O	Receiver Data Non-Inverted	3	
30	GND		Ground	1	
31	GND		Ground	1	

武汉速粒通科技有限公司

Wuhan Suliton Technology Co., Ltd

32	RX2p	CML-O	Receiver Data Non-Inverted	3	
33	RX2n	CML-O	Receiver Data Inverted	3	
34	GND		Ground	1	
35	RX4p	CML-O	Receiver Data Non-Inverted	3	
36	RX4n	CML-O	Receiver Data Inverted	3	
37	GND		Ground	1	
38	RX6p	CML-O	Receiver Data Non-Inverted	3	
39	RX6n	CML-O	Receiver Data Inverted	3	
40	GND		Ground	1	
41	RX8p	CML-O	Receiver Data Non-Inverted	3	
42	RX8n	CML-O	Receiver Data Inverted	3	
43	GND		Ground	1	
44	INT/RSTn	Multi- Level	Module Interrupt / Module Reset	3	1B
45	VCC		+3.3V Power	2	
46	VCC		+3.3V Power	2	
47	SDA	LVCMOS- I/O	2-wire Serial interface data	3	
48	GND		Ground	1	
49	TX7n	CML-I	Transmitter Data Inverted	3	
50	TX7p	CML-I	Transmitter Data Non-Inverted	3	
51	GND		Ground	1	
52	TX5n	CML-I	Transmitter Data Inverted	3	
53	TX5p	CML-I	Transmitter Data Non-Inverted	3	
54	GND		Ground	1	
55	TX3n	CML-I	Transmitter Data Inverted	3	
56	TX3p	CML-I	Transmitter Data Non-Inverted	3	
57	GND		Ground	1	
58	TX1n	CML-I	Transmitter Data Inverted	3	
59	TX1p	CML-I	Transmitter Data Non-Inverted	3	
60	GND		Ground	1	
···	I	1		I	I

Notes:

1. Plug Sequence specifies the mating sequence of the host connector and module. The contact sequence is 1,2,3.

2. LPWn/PRSn is a Multi-level signal for low power control from host to module and module presence indication from module to host. It designed according to OSFP Module Specification Section 13.5.3

3. INT/RSTnisa Multi-level signal for interrupt request from module to host and reset control from host to module.

It designed according to OSFP Module Specification Section 13.5.2

XI. Mechanical

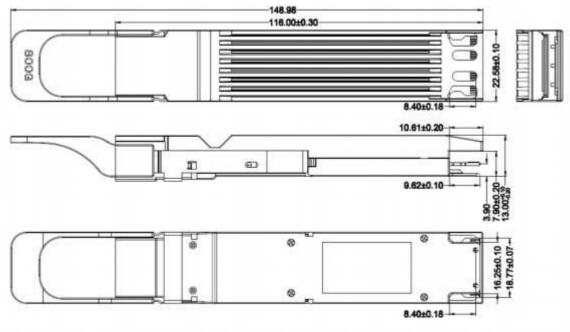


Figure 9, Mechanical Diagram

Optical interface requirement

The optical port provides two options, Dual MPO12 APC and MPO16 APC as follows:

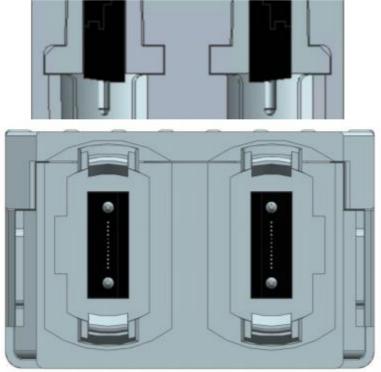


Figure 10, Dual MPO12 APC interface

武汉速粒通科技有限公司

Wuhan Suliton Technology Co., Ltd

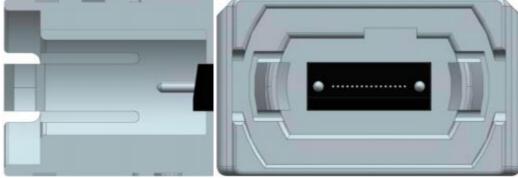


Figure 11, MPO16 APC interface

XII. Revision history

Version	Initiated	Reviewed	Revision	Release Date
A0	Tony	Jack	New Release	2023-09-09

XIII. Warnings

Handling Precautions: This device is susceptible to damage as a result of electrostatic discharge (ESD). A static free environment is highly recommended. Follow guidelines according to proper ESD procedures. **Laser Safety:** Radiation emitted by laser devices can be dangerous to human eyes. Avoid eye exposure to direct or indirect radiation.

XIV. Contact Information

Sales@suliton.com